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Introduction

In order to study the inner-workings of ecosystems, it is important to understand population abundance of
the species present in these ecosystems. Often, it is far more feasible to obtain this information through
sampling and estimation rather than attempting to collect data about the entire population. One way to
estimate population abundance is through the utilization of distance sampling. Distance sampling involves
an observer, who traverses established lines (called transects), recording the locations of observed organisms
along those transects. In one study of zebra mussels in Minnesota lakes, scuba divers collected data through
distance sampling in Lake Bergen (data shown in Figure 1).
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Figure 1.

Based on population data, researchers are able to discern probability models and probability density func-
tions. These models and detection probabilities inform population estimation. Previous research found that
individual values from random samples of observed distances of zebra mussels follow a half-normal distribu-
tion. However, the population parameter sigma squared (σ2) is unknown. The value of σ2 is needed in order
to calculate detection probabilities, which are then used to estimate how many mussels are in the lake.

This paper thus derives and compares competing estimators of σ2, with the ultimate goal of selecting the
best estimator. This estimator will help describe the population of zebra mussels and allow researchers to
obtain information about population abundance in Lake Bergen.

1



Methods

As previously stated, past research found that zebra mussel distances from the transect in Lake Bergen follow
a half normal distribution. Thus, the model can be defined as Xi ∼ half normal, where each Xi represents
an individual detection distance. This distribution has the following pdf, expected value, and variance:

f(x) = 2√
2πσ

e−x2/(2σ2) for x ≥ 0

E(X) = σ
√

2
π

V (X) = σ2(1 − 2
π )

Using this data model, estimators of σ2 were constructed using both Maximum Likelihood Estimation
(MLE) and Method of Moments Estimation (MOM). See Appendix 1.b for the calculation of the MOM
estimator.

σ̂2
MLE = 1

n

n∑
i=1

X2
i

σ̂2
MOM = π ¯(X)2
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To evaluate these estimators, we derived the bias by subtracting σ2 from the expected value of each estimator.
We found that the MLE estimator is unbiased, but that the MOM estimator has positive but asymptotic
bias that follows the formula Bias[σ̂2

MOM ] = σ2( π
2 −1)
n . See Appendix 1.c for calculations of biases.

Another technique to evaluate estimators is comparing the confidence intervals. To aid with these calcula-
tions, it is helpful to know the distribution of the estimator. We found the distribution of the MLE estimator
to be σ̂2

MLE ∼ Gamma( n
2 , n

2σ2 ) through the distribution function method (See Appendix 1.a). With the
quantiles from the pivotal stat distribution: σ̂2

MLE

σ2 ∼ Gamma( n
2 , n

2 ), we can calculate the lower and upper
bounds of a 95% confidence interval (See Appendix 1.d). We found the following equations for the upper
(U(x)) and lower (L(x)) bounds:

L(x) =

1
n

n∑
i=1

X2
i

q0.975

U(x) =

1
n

n∑
i=1

X2
i

q0.025

To evaluate these equations, we constructed a simulation study. As the distribution of each individual Xi is
known, we can pull random samples from a half normal distribution after fixing arbitrary values for n and
σ. The results for this simulation will allow us to conclude which estimator is the most accurate with the
least amount of variability.

After fixing values of σ and sample size (n), we drew 10,000 random samples from the half normal distribution.
For each randomly generated sample, we calculated an estimation of σ2 based on the derived estimator
formulas. Because we had found the distribution of the MLE estimator, we were also able to calculate the
CI coverage and length for each random sample, based on the lower and upper bound calculations described
above. Then for each sample, we ran a bootstrap simulation, calculating the estimation of σ2 based on the
bootstrap resample, for each of the 10,000 resamples. With the results of each simulation, we calculated the
bias, mean square error (MSE), and bootstrap CI coverage and interval length for each of the estimators.

We then repeated this process across various values of n and σ. To test a wide variety of estimations, we
chose small, medium, and large values of both σ and n (σ = 0.5, 4, 15; n=50, 300, 800). This allows us to
conclude, regardless of the true values of n and σ, which estimator should be used to inform zebra mussel
population abundance.

Note: An example of one run of this simulation can be found in the R Markdown Appendix.
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Results

As predicted by the calculations of the theoretical bias of each estimator, the simulations found that σ̂2
MLE

has a smaller bias than σ̂2
MOM (Figure 2). Regardless of the values of σ and n, this holds true. The bias

of the MLE estimator is negligible across all simulations (−0.0353 ≤ Bias[σ̂2
MLE ] ≤ 0.438) and any values

other than 0 reflect simulation error.
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Figure 2.

Similarly, in every simulation, the values of MSE[σ̂2
MLE ] are smaller than those for the MSE[σ̂2

MOM ] (Tables
1 and 2). For example, with n = 50 and σ = 4, MSE[σ̂2

MLE ] = 10.197 ≤ MSE[σ̂2
MOM ] = 11.87. These

results indicate that the MLE estimator is more accurate and less variable.

Table 1: MOM estimator MSE

n = 50 n = 300 n = 800
σ = 0.5 0.00290 0.000475 0.000173
σ = 4 11.87 1.946 0.710
σ = 15 2347.304 384.924 140.432

Table 2: MLE estimator MSE

n = 50 n = 300 n = 800
σ = 0.5 0.00249 0.000411 0.000150
σ = 4 10.197 1.6842 0.615
σ = 15 2016.582 333.066 121.645

Complicating these findings is the bootstrap coverage of each estimator. For smaller sample sizes, the
coverage rate for each estimator fell short of the desired 95% (for n of 50, MOM coverage is 0.9424 and
MLE coverage is 0.9197) (Table 3). While in this instance the MOM coverage is closer to the desired value,
as sample size becomes very large, both estimators have values closer to the desired coverage (for n of 800,
MOM coverage is 0.9507 and MLE coverage is 0.9504) (Table 3). On the other hand, the formula based
coverage for the MLE estimator is more consistently closer to the desired value across all sample sizes (0.9508,
0.9506, and 0.9536 for n=50, 300, and 800 respectively) (Table 3). However, it is also important to consider
interval length. The MOM estimator has the longest CI interval lengths (Table 4). For the MLE estimator,
the bootstrapped CI interval length is smaller than the formula based CI interval length (Tables 5 and 6).
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Table 3: Coverage by estimation method

n = 50 n = 300 n = 800
MOM Estimator Bootstrap Coverage 0.9424 0.9451 0.9507
MLE Estimator Bootstrap Coverage 0.9197 0.9454 0.9507
MLE Estimator Formula Based Coverage 0.9508 0.9506 0.9536

Table 4: MOM estimator bootstrap confidence interval length

n = 50 n = 300 n = 800
σ = 0.5 0.209 0.0854 0.0523
σ = 4 13.364 5.467 3.350
σ = 15 187.926 76.849 47.105

Table 5: MLE estimator bootstrap confidence interval length

n = 50 n = 300 n = 800
σ = 0.5 0.187 0.0793 0.0489
σ = 4 11.989 5.076 3.127
σ = 15 168.598 71.379 43.974

Table 6: MLE estimator confidence interval length

n = 50 n = 300 n = 800
σ = 0.5 0.212 0.0810 0.0492
σ = 4 13.549 5.184 3.151
σ = 15 190.532 72.902 44.313

Based on these results, it is clear that the MLE estimator is more accurate and less variable than the MOM
estimator. Therefore, we used the MLE estimator on the Lake Bergen data to obtain the point estimate of
σ2 = 0.2075.

For n = 50, this formula CI has a coverage rate closer to the desired 95% (95.08%) than the bootstrap method
(91.97%) (Table 3). Even though the intervals for the bootstrap CIs are smaller, it is more important to
achieve the desired confidence level. Due to the fact that the Lake Bergen data has a sample size of 77,
which is closest to our simulations where n = 50, we found the confidence interval using the formula based
CI calculation. This resulted in the confidence interval of 0.1549 to 0.2925. Thus we are 95% confident that
the true value of σ2 is between 0.1549 and 0.2925.

Discussion

With these point and interval estimates of σ2, we were then able to calculate point and interval estimates
for px, the probability of detecting a mussel that is x meters off the transect. We did so by substituting the
point and interval estimates into the following equation for px (the probability density function of the half
normal distribution): px = e−x2/(2σ2). This resulted in the point estimates of 0.0899 for x = 1 meter and
0.5475 for x = 0.5 meters. The interval estimates are (0.0396, 0.181) and (0.4462, 0.652) respectively.

These probabilities provide two useful insights. First, the probability of detection just one meter off the
transect is extremely low (8.99%), and the probability of detection a half meter off the transect is just over
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50% (54.75%). This represents the difficulty of surveying the exact counts of zebra mussels and motivates
our method of estimating the population abundance. Second, these probabilities, in conjunction with the
data on the observed muscles, allow researchers to obtain a close estimation of the population abundance.
For example, if scuba divers detect y mussels with a 0.5 probability of detection, it follows that y mussels
were missed, leading to a population estimation of 2y.

While our estimations are helpful in estimating population abundance, it is important to note the limitations
of our simulations. Our biggest limitation was computing power. A replication value of 10,000 is fairly large,
but still leads to non-negligible simulation error. This stands out with the bias of the MLE estimator. Our
simulated values are non-zero despite our theoretical calculations that show the MLE estimator is unbiased
(Appendix 1.c). Furthermore, unlimited computing power would allow for the simulation of a wider variety
of values for n and σ. More values could have better informed the choices of estimator and CI calculation.
Future research should explore the impact of greater computing capabilities.

Finally, with a data set of only 77 entries, the size of the Lake Bergen data set informed our choice of CI
calculation. With larger values of n, we would have chosen the bootstrap method, which would have resulted
in a shorter confidence interval than the formula method. As such, we hope that future research will be able
to gather more data points from Lake Bergen to allow for a more precise estimation of σ.
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Appendix 
1.a) Calculation of distribution of MLE estimator 

 
1.b) Calculation of MOM estimator 
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1.c) Calculation of biases for both estimators 

 
 
1.d) Calculation of formula MLE confidence interval
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R Markdown Appendix
Simulations

# Making the results reproducible
set.seed(647465357)
# Sample size
n <- 50
# Set value of sigma
sigma <- 15

# Number of replications
N <- 10000

# Setting up empty vectors
est_mle <- rep(NA, N)
est_mom <- rep(NA, N)
mle_lower <- rep(NA, N)
mle_upper <- rep(NA, N)
mle_boot_lower <- rep(NA, N)
mle_boot_upper <- rep(NA, N)
mom_boot_lower <- rep(NA, N)
mom_boot_upper <- rep(NA, N)

for (i in 1:N) {
# Generating a half normal random sample
x <- abs(rnorm(n, 0, sigma))

# Computing point estimates based on the formulas for mle and mom
est_mle[i] <- (1/n)*(sum(xˆ2))
est_mom[i] <- (pi/2)*(mean(x)ˆ2)

# Computing lower and upper bounds based on the exact mle CI (Appendix 1. d)
mle_lower[i] <- (est_mle[i])/ qgamma(.975, n/2, n/2)
mle_upper[i] <- (est_mle[i])/ qgamma(.025, n/2, n/2)

# Setting up empty vector
boot_mle <- rep(NA, N)
boot_mom <- rep(NA, N)

# Setting up the for loop to bootstrap each sample
for (j in 1:N) {

resample <- sample(x, n, replace = TRUE)
boot_mle[j] <- (1/n)*(sum(resampleˆ2))
boot_mom[j] <- (pi/2)*(mean(resample)ˆ2)

}

# Storing the bootstrapped values
mle_boot_lower[i] <- quantile(boot_mle, .025)
mle_boot_upper[i] <- quantile(boot_mle, .975)

mom_boot_lower[i] <- quantile(boot_mom, .025)
mom_boot_upper[i] <- quantile(boot_mom, .975)

}
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# Calculating the means of all of the estimates
avg_est_mle <- mean(est_mle)
avg_est_mle

## [1] 225.4385

avg_est_mom <- mean(est_mom)
avg_est_mom

## [1] 228.115

avg_mle_lower <- mean(mle_lower)
avg_mle_upper <- mean(mle_upper)
avg_mle_boot_lower <- mean(mle_boot_lower)
avg_mle_boot_upper <- mean(mle_boot_upper)
avg_mom_boot_lower <- mean(mom_boot_lower)
avg_mom_boot_upper <- mean(mom_boot_upper)

# Calculating bias of the point estimates
mom_bias <- avg_est_mom - sigmaˆ2
mom_bias

## [1] 3.115014

mle_bias <- avg_est_mle - sigmaˆ2
mle_bias

## [1] 0.4384716

# Calculating the percent bias for the point estimates
mom_perc_bias <- (100*mom_bias)/(sigmaˆ2)
mle_perc_bias <- (100*mle_bias)/(sigmaˆ2)

# Calculating the mse for the point estimates
mom_mse <- mean(((est_mom) - (sigmaˆ2))ˆ2)
mom_mse

## [1] 2347.304

mle_mse <- mean(((est_mle) - (sigmaˆ2))ˆ2)
mle_mse

## [1] 2016.582

# Calculating the coverage and length of the interval for mle CI and the bootstrapped CIs
mle_cover <- mean((mle_lower <= sigmaˆ2) & (sigmaˆ2 <= mle_upper))
mle_cover

## [1] 0.9508

mle_mean_length <- mean(mle_upper - mle_lower)
mle_mean_length

## [1] 190.5319

mle_boot_cover <- mean((mle_boot_lower <= sigmaˆ2) & (sigmaˆ2 <= mle_boot_upper))
mle_boot_cover

## [1] 0.9197
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mle_boot_mean_length <- mean(mle_boot_upper - mle_boot_lower)
mle_boot_mean_length

## [1] 168.5978

mom_boot_cover <- mean((mom_boot_lower <= sigmaˆ2) & (sigmaˆ2 <= mom_boot_upper))
mom_boot_cover

## [1] 0.9424

mom_boot_mean_length <- mean(mom_boot_upper - mom_boot_lower)
mom_boot_mean_length

## [1] 187.9264

Estimating with the Data from Lake Bergen

# Loading the collected data
lake <- read.csv("http://math.carleton.edu/kstclair/data/BergenData.csv")

# Using the MLE estimator to get an estimation for sigma based on the real data
real_estimation <- (1/length(lake$distance))*(sum(lake$distanceˆ2))
real_estimation

## [1] 0.2075276

# Using the formula based confidence interval
real_mle_lower <- (real_estimation)/ qgamma(.975, n/2, n/2)
real_mle_lower

## [1] 0.1452864

real_mle_upper <- (real_estimation)/ qgamma(.025, n/2, n/2)
real_mle_upper

## [1] 0.3206806

# Estimation of detection probabilities in Lake Bergen
x <- c(.5, 1)

# Point estimate
prob_x <- exp(((-xˆ2)/(2*real_estimation)))
prob_x

## [1] 0.54753465 0.08987656

# Confidence interval estimate
prob_lower <- exp(((-xˆ2)/(2*real_mle_lower)))
prob_lower

## [1] 0.42300560 0.03201728

prob_upper <- exp(((-xˆ2)/(2*real_mle_upper)))
prob_upper

## [1] 0.6771951 0.2103077
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